3.522 \(\int \cos ^4(c+d x) (a+b \tan (c+d x))^2 \, dx\)

Optimal. Leaf size=88 \[ -\frac {\cos ^2(c+d x) \left (2 a b-\left (3 a^2+b^2\right ) \tan (c+d x)\right )}{8 d}+\frac {1}{8} x \left (3 a^2+b^2\right )-\frac {\cos ^4(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{4 d} \]

[Out]

1/8*(3*a^2+b^2)*x-1/4*cos(d*x+c)^4*(b-a*tan(d*x+c))*(a+b*tan(d*x+c))/d-1/8*cos(d*x+c)^2*(2*a*b-(3*a^2+b^2)*tan
(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3506, 739, 639, 203} \[ -\frac {\cos ^2(c+d x) \left (2 a b-\left (3 a^2+b^2\right ) \tan (c+d x)\right )}{8 d}+\frac {1}{8} x \left (3 a^2+b^2\right )-\frac {\cos ^4(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*(a + b*Tan[c + d*x])^2,x]

[Out]

((3*a^2 + b^2)*x)/8 - (Cos[c + d*x]^4*(b - a*Tan[c + d*x])*(a + b*Tan[c + d*x]))/(4*d) - (Cos[c + d*x]^2*(2*a*
b - (3*a^2 + b^2)*Tan[c + d*x]))/(8*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 639

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*e - c*d*x)*(a + c*x^2)^(p + 1))/(2*a
*c*(p + 1)), x] + Dist[(d*(2*p + 3))/(2*a*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x]
&& LtQ[p, -1] && NeQ[p, -3/2]

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
 c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 3506

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(b*f), Subst
[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 + b
^2, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) (a+b \tan (c+d x))^2 \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(a+x)^2}{\left (1+\frac {x^2}{b^2}\right )^3} \, dx,x,b \tan (c+d x)\right )}{b d}\\ &=-\frac {\cos ^4(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{4 d}+\frac {b \operatorname {Subst}\left (\int \frac {1+\frac {3 a^2}{b^2}+\frac {2 a x}{b^2}}{\left (1+\frac {x^2}{b^2}\right )^2} \, dx,x,b \tan (c+d x)\right )}{4 d}\\ &=-\frac {\cos ^4(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{4 d}-\frac {\cos ^2(c+d x) \left (2 a b-\left (3 a^2+b^2\right ) \tan (c+d x)\right )}{8 d}+\frac {\left (\left (1+\frac {3 a^2}{b^2}\right ) b\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {x^2}{b^2}} \, dx,x,b \tan (c+d x)\right )}{8 d}\\ &=\frac {1}{8} \left (3 a^2+b^2\right ) x-\frac {\cos ^4(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{4 d}-\frac {\cos ^2(c+d x) \left (2 a b-\left (3 a^2+b^2\right ) \tan (c+d x)\right )}{8 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 2.98, size = 216, normalized size = 2.45 \[ \frac {4 \left (a^2+b^2\right ) \cos ^4(c+d x) (a \tan (c+d x)+b) (a+b \tan (c+d x))^3+\frac {\left (3 a^2+b^2\right ) \left (-\sqrt {-b^2} \left (b^4-a^4\right ) \sin (2 (c+d x))-2 a b \sqrt {-b^2} \left (a^2+b^2\right ) \cos (2 (c+d x))+b \left (a^2+b^2\right )^2 \log \left (\sqrt {-b^2}-b \tan (c+d x)\right )-b \left (a^2+b^2\right )^2 \log \left (\sqrt {-b^2}+b \tan (c+d x)\right )+2 a b \sqrt {-b^2} \left (2 a^2+b^2\right )\right )}{\sqrt {-b^2}}}{16 d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*(a + b*Tan[c + d*x])^2,x]

[Out]

(((3*a^2 + b^2)*(2*a*b*Sqrt[-b^2]*(2*a^2 + b^2) - 2*a*b*Sqrt[-b^2]*(a^2 + b^2)*Cos[2*(c + d*x)] + b*(a^2 + b^2
)^2*Log[Sqrt[-b^2] - b*Tan[c + d*x]] - b*(a^2 + b^2)^2*Log[Sqrt[-b^2] + b*Tan[c + d*x]] - Sqrt[-b^2]*(-a^4 + b
^4)*Sin[2*(c + d*x)]))/Sqrt[-b^2] + 4*(a^2 + b^2)*Cos[c + d*x]^4*(b + a*Tan[c + d*x])*(a + b*Tan[c + d*x])^3)/
(16*(a^2 + b^2)^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 75, normalized size = 0.85 \[ -\frac {4 \, a b \cos \left (d x + c\right )^{4} - {\left (3 \, a^{2} + b^{2}\right )} d x - {\left (2 \, {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, a^{2} + b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{8 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/8*(4*a*b*cos(d*x + c)^4 - (3*a^2 + b^2)*d*x - (2*(a^2 - b^2)*cos(d*x + c)^3 + (3*a^2 + b^2)*cos(d*x + c))*s
in(d*x + c))/d

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)(24*a^2*d*x*tan(c)^4*tan(d*x)^4+48*a^2*d*x*tan(c)^4*tan(d*x)^2+24*a^2*d*x*tan(c)^4+48*a^2*d*x*tan(c)^2*tan
(d*x)^4+96*a^2*d*x*tan(c)^2*tan(d*x)^2+48*a^2*d*x*tan(c)^2+24*a^2*d*x*tan(d*x)^4+48*a^2*d*x*tan(d*x)^2+24*a^2*
d*x-40*a^2*tan(c)^4*tan(d*x)^3-24*a^2*tan(c)^4*tan(d*x)-40*a^2*tan(c)^3*tan(d*x)^4+48*a^2*tan(c)^3*tan(d*x)^2+
24*a^2*tan(c)^3+48*a^2*tan(c)^2*tan(d*x)^3-48*a^2*tan(c)^2*tan(d*x)-24*a^2*tan(c)*tan(d*x)^4-48*a^2*tan(c)*tan
(d*x)^2+40*a^2*tan(c)+24*a^2*tan(d*x)^3+40*a^2*tan(d*x)-20*a*b*tan(c)^4*tan(d*x)^4+24*a*b*tan(c)^4*tan(d*x)^2+
12*a*b*tan(c)^4+128*a*b*tan(c)^3*tan(d*x)^3+24*a*b*tan(c)^2*tan(d*x)^4-144*a*b*tan(c)^2*tan(d*x)^2+24*a*b*tan(
c)^2+128*a*b*tan(c)*tan(d*x)+12*a*b*tan(d*x)^4+24*a*b*tan(d*x)^2-20*a*b+8*b^2*d*x*tan(c)^4*tan(d*x)^4+16*b^2*d
*x*tan(c)^4*tan(d*x)^2+8*b^2*d*x*tan(c)^4+16*b^2*d*x*tan(c)^2*tan(d*x)^4+32*b^2*d*x*tan(c)^2*tan(d*x)^2+16*b^2
*d*x*tan(c)^2+8*b^2*d*x*tan(d*x)^4+16*b^2*d*x*tan(d*x)^2+8*b^2*d*x+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*
tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)^2*tan(d*x)^2-2)*tan(c)^4*tan(d*x)^4+6*b^2*pi*sign(2*tan(c)^2*tan
(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)^2*tan(d*x)^2-2)*tan(c)^4*tan(d*x)^2+3*b^2*pi*sign
(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)^2*tan(d*x)^2-2)*tan(c)^4+6*b^2*pi*
sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)^2*tan(d*x)^2-2)*tan(c)^2*tan(d
*x)^4+12*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)^2*tan(d*x)^2-2
)*tan(c)^2*tan(d*x)^2+6*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*tan(c)
^2*tan(d*x)^2-2)*tan(c)^2+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sign(2*ta
n(c)^2*tan(d*x)^2-2)*tan(d*x)^4+6*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*sig
n(2*tan(c)^2*tan(d*x)^2-2)*tan(d*x)^2+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x
))*sign(2*tan(c)^2*tan(d*x)^2-2)+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*ta
n(c)^4*tan(d*x)^4+6*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan(c)^4*tan(d*x)
^2+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan(c)^4+6*b^2*pi*sign(2*tan(c)^
2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan(c)^2*tan(d*x)^4+12*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*t
an(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan(c)^2*tan(d*x)^2+6*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^
2-2*tan(c)+2*tan(d*x))*tan(c)^2+3*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan
(d*x)^4+6*b^2*pi*sign(2*tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))*tan(d*x)^2+3*b^2*pi*sign(2*
tan(c)^2*tan(d*x)-2*tan(c)*tan(d*x)^2-2*tan(c)+2*tan(d*x))+6*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))*t
an(c)^4*tan(d*x)^4+12*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))*tan(c)^4*tan(d*x)^2+6*b^2*atan((tan(c)+t
an(d*x))/(tan(c)*tan(d*x)-1))*tan(c)^4+12*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))*tan(c)^2*tan(d*x)^4+
24*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))*tan(c)^2*tan(d*x)^2+12*b^2*atan((tan(c)+tan(d*x))/(tan(c)*t
an(d*x)-1))*tan(c)^2+6*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))*tan(d*x)^4+12*b^2*atan((tan(c)+tan(d*x)
)/(tan(c)*tan(d*x)-1))*tan(d*x)^2+6*b^2*atan((tan(c)+tan(d*x))/(tan(c)*tan(d*x)-1))-6*b^2*atan((tan(c)-tan(d*x
))/(tan(c)*tan(d*x)+1))*tan(c)^4*tan(d*x)^4-12*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(c)^4*tan(d*
x)^2-6*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(c)^4-12*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)
+1))*tan(c)^2*tan(d*x)^4-24*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(c)^2*tan(d*x)^2-12*b^2*atan((t
an(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(c)^2-6*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(d*x)^4-12*
b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))*tan(d*x)^2-6*b^2*atan((tan(c)-tan(d*x))/(tan(c)*tan(d*x)+1))+8
*b^2*tan(c)^4*tan(d*x)^3-8*b^2*tan(c)^4*tan(d*x)+8*b^2*tan(c)^3*tan(d*x)^4-48*b^2*tan(c)^3*tan(d*x)^2+8*b^2*ta
n(c)^3-48*b^2*tan(c)^2*tan(d*x)^3+48*b^2*tan(c)^2*tan(d*x)-8*b^2*tan(c)*tan(d*x)^4+48*b^2*tan(c)*tan(d*x)^2-8*
b^2*tan(c)+8*b^2*tan(d*x)^3-8*b^2*tan(d*x))/(64*d*tan(c)^4*tan(d*x)^4+128*d*tan(c)^4*tan(d*x)^2+64*d*tan(c)^4+
128*d*tan(c)^2*tan(d*x)^4+256*d*tan(c)^2*tan(d*x)^2+128*d*tan(c)^2+64*d*tan(d*x)^4+128*d*tan(d*x)^2+64*d)

________________________________________________________________________________________

maple [A]  time = 0.44, size = 97, normalized size = 1.10 \[ \frac {b^{2} \left (-\frac {\left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{4}+\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{8}+\frac {d x}{8}+\frac {c}{8}\right )-\frac {a b \left (\cos ^{4}\left (d x +c \right )\right )}{2}+a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+b*tan(d*x+c))^2,x)

[Out]

1/d*(b^2*(-1/4*cos(d*x+c)^3*sin(d*x+c)+1/8*cos(d*x+c)*sin(d*x+c)+1/8*d*x+1/8*c)-1/2*a*b*cos(d*x+c)^4+a^2*(1/4*
(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 85, normalized size = 0.97 \[ \frac {{\left (3 \, a^{2} + b^{2}\right )} {\left (d x + c\right )} + \frac {{\left (3 \, a^{2} + b^{2}\right )} \tan \left (d x + c\right )^{3} - 4 \, a b + {\left (5 \, a^{2} - b^{2}\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{4} + 2 \, \tan \left (d x + c\right )^{2} + 1}}{8 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

1/8*((3*a^2 + b^2)*(d*x + c) + ((3*a^2 + b^2)*tan(d*x + c)^3 - 4*a*b + (5*a^2 - b^2)*tan(d*x + c))/(tan(d*x +
c)^4 + 2*tan(d*x + c)^2 + 1))/d

________________________________________________________________________________________

mupad [B]  time = 3.66, size = 83, normalized size = 0.94 \[ x\,\left (\frac {3\,a^2}{8}+\frac {b^2}{8}\right )+\frac {\left (\frac {3\,a^2}{8}+\frac {b^2}{8}\right )\,{\mathrm {tan}\left (c+d\,x\right )}^3+\left (\frac {5\,a^2}{8}-\frac {b^2}{8}\right )\,\mathrm {tan}\left (c+d\,x\right )-\frac {a\,b}{2}}{d\,\left ({\mathrm {tan}\left (c+d\,x\right )}^4+2\,{\mathrm {tan}\left (c+d\,x\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(a + b*tan(c + d*x))^2,x)

[Out]

x*((3*a^2)/8 + b^2/8) + (tan(c + d*x)*((5*a^2)/8 - b^2/8) - (a*b)/2 + tan(c + d*x)^3*((3*a^2)/8 + b^2/8))/(d*(
2*tan(c + d*x)^2 + tan(c + d*x)^4 + 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \tan {\left (c + d x \right )}\right )^{2} \cos ^{4}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+b*tan(d*x+c))**2,x)

[Out]

Integral((a + b*tan(c + d*x))**2*cos(c + d*x)**4, x)

________________________________________________________________________________________